Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418917

RESUMO

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Assuntos
Processamento Alternativo , Evolução Molecular , Hominidae , Proteínas com Domínio T , Cauda , Animais , Humanos , Camundongos , Processamento Alternativo/genética , Elementos Alu/genética , Modelos Animais de Doenças , Genoma/genética , Hominidae/anatomia & histologia , Hominidae/genética , Íntrons/genética , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Fenótipo , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Cauda/anatomia & histologia , Cauda/embriologia , Éxons/genética
2.
Semin Cell Dev Biol ; 152-153: 44-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029058

RESUMO

The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.


Assuntos
Proteínas de Homeodomínio , Medula Espinal , Animais , Proteínas de Homeodomínio/metabolismo , Medula Espinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Neurônios Motores/metabolismo , Vertebrados
3.
Cell Rep ; 42(9): 113049, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676768

RESUMO

Locomotion requires precise control of the strength and speed of muscle contraction and is achieved by recruiting functionally distinct subtypes of motor neurons (MNs). MNs are essential to movement and differentially susceptible in disease, but little is known about how MNs acquire functional subtype-specific features during development. Using single-cell RNA profiling in embryonic and larval zebrafish, we identify novel and conserved molecular signatures for MN functional subtypes and identify genes expressed in both early post-mitotic and mature MNs. Assessing MN development in genetic mutants, we define a molecular program essential for MN functional subtype specification. Two evolutionarily conserved transcription factors, Prdm16 and Mecom, are both functional subtype-specific determinants integral for fast MN development. Loss of prdm16 or mecom causes fast MNs to develop transcriptional profiles and innervation similar to slow MNs. These results reveal the molecular diversity of vertebrate axial MNs and demonstrate that functional subtypes are specified through intrinsic transcriptional codes.


Assuntos
Medula Espinal , Peixe-Zebra , Animais , Neurônios Motores/fisiologia , Fatores de Transcrição/genética , Locomoção
4.
Elife ; 112022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36288084

RESUMO

The little skate Leucoraja erinacea, a cartilaginous fish, displays pelvic fin driven walking-like behavior using genetic programs and neuronal subtypes similar to those of land vertebrates. However, mechanistic studies on little skate motor circuit development have been limited, due to a lack of high-quality reference genome. Here, we generated an assembly of the little skate genome, with precise gene annotation and structures, which allowed post-genome analysis of spinal motor neurons (MNs) essential for locomotion. Through interspecies comparison of mouse, skate and chicken MN transcriptomes, shared and divergent gene expression profiles were identified. Comparison of accessible chromatin regions between mouse and skate MNs predicted shared transcription factor (TF) motifs with divergent ones, which could be used for achieving differential regulation of MN-expressed genes. A greater number of TF motif predictions were observed in MN-expressed genes in mouse than in little skate. These findings suggest conserved and divergent molecular mechanisms controlling MN development of vertebrates during evolution, which might contribute to intricate gene regulatory networks in the emergence of a more sophisticated motor system in tetrapods.


Assuntos
Rajidae , Animais , Camundongos , Cromatina/metabolismo , Neurônios Motores , Rajidae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Caminhada , Genoma
5.
Adv Neurobiol ; 28: 3-44, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36066819

RESUMO

Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.


Assuntos
Neurônios Motores , Medula Espinal , Humanos , Músculos , Neurogênese
6.
Elife ; 112022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34994686

RESUMO

Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Animais , Animais Geneticamente Modificados , Galinhas , Camundongos , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo
7.
Development ; 147(22)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33028607

RESUMO

Although Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aimed to address how similar Hox TFs diverge to induce different positional identities. We studied Hox TF DNA-binding and regulatory activity during an in vitro motor neuron differentiation system that recapitulates embryonic development. We found diversity in the genomic binding profiles of different Hox TFs, even among the posterior group paralogs that share similar DNA-binding domains. These differences in genomic binding were explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 had a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior Hox TFs to bind to previously inaccessible chromatin drive patterning diversification.This article has an associated 'The people behind the papers' interview.


Assuntos
Diferenciação Celular , Cromatina/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Proteínas de Homeodomínio/genética , Camundongos , Neurônios Motores/citologia , Fatores de Transcrição/genética
9.
Cell Rep ; 27(9): 2620-2635.e4, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141687

RESUMO

Coordinated motor behaviors depend on feedback communication between peripheral sensory systems and central circuits in the brain and spinal cord. Relay of muscle- and tendon-derived sensory information to the CNS is facilitated by functionally and anatomically diverse groups of spinocerebellar tract neurons (SCTNs), but the molecular logic by which SCTN diversity and connectivity is achieved is poorly understood. We used single-cell RNA sequencing and genetic manipulations to define the mechanisms governing the molecular profile and organization of SCTN subtypes. We found that SCTNs relaying proprioceptive sensory information from limb and axial muscles are generated through segmentally restricted actions of specific Hox genes. Loss of Hox function disrupts SCTN-subtype-specific transcriptional programs, leading to defects in the connections between proprioceptive sensory neurons, SCTNs, and the cerebellum. These results indicate that Hox-dependent genetic programs play essential roles in the assembly of neural circuits necessary for communication between the brain and spinal cord.


Assuntos
Proteínas de Homeodomínio/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Células Receptoras Sensoriais/fisiologia , Tratos Espinocerebelares/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos Knockout , Neurônios Motores/citologia , Células Receptoras Sensoriais/citologia , Tratos Espinocerebelares/citologia
10.
Trends Neurosci ; 41(10): 648-651, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30274599

RESUMO

Nervous systems control locomotion using rhythmically active networks that orchestrate motor neuron firing patterns. Whether animals use common or distinct genetic programs to encode motor rhythmicity remains unclear. Cross-species comparisons have revealed remarkably conserved neural patterning systems but have also unveiled divergent circuit architectures that can generate similar locomotor behaviors.


Assuntos
Comportamento Animal/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Periodicidade , Medula Espinal/crescimento & desenvolvimento , Animais , Medula Espinal/fisiologia
11.
Neural Dev ; 13(1): 10, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29855378

RESUMO

Neuronal control of muscles associated with the central body axis is an ancient and essential function of the nervous systems of most animal species. Throughout the course of vertebrate evolution, motor circuits dedicated to control of axial muscle have undergone significant changes in their roles within the motor system. In most fish species, axial circuits are critical for coordinating muscle activation sequences essential for locomotion and play important roles in postural correction. In tetrapods, axial circuits have evolved unique functions essential to terrestrial life, including maintaining spinal alignment and breathing. Despite the diverse roles of axial neural circuits in motor behaviors, the genetic programs underlying their assembly are poorly understood. In this review, we describe recent studies that have shed light on the development of axial motor circuits and compare and contrast the strategies used to wire these neural networks in aquatic and terrestrial vertebrate species.


Assuntos
Evolução Biológica , Locomoção/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Rede Nervosa/fisiologia , Animais , Humanos , Vertebrados
12.
Cell Stem Cell ; 22(4): 469-471, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625060

RESUMO

DNA methylation is an epigenetic mark that plays pivotal roles in gene regulation, but its functions in neural fate decisions are poorly understood. In this issue of Cell Stem Cell, Ziller et al. (2018) show that the de novo methyltransferase Dnmt3a ensures efficient generation of motor neurons from stem cells.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Diferenciação Celular , Humanos , Neurônios Motores , Células-Tronco
13.
Cell ; 172(4): 667-682.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425489

RESUMO

Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.


Assuntos
Proteínas Aviárias , Galinhas/fisiologia , Evolução Molecular , Proteínas de Peixes , Proteínas de Homeodomínio , Rede Nervosa/fisiologia , Rajidae/fisiologia , Fatores de Transcrição , Caminhada/fisiologia , Peixe-Zebra/fisiologia , Nadadeiras de Animais/fisiologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/fisiologia , Natação/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Curr Biol ; 28(2): R86-R88, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29374453

RESUMO

Topographic maps are a basic organizational feature of nervous systems, and their construction involves both spatial and temporal cues. A recent study reports a novel mechanism of topographic map formation which relies on the timing of axon initiation.


Assuntos
Axônios , Neurônios Motores
15.
Neuron ; 97(2): 341-355.e3, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29307712

RESUMO

Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.


Assuntos
Genes Homeobox , Medula Espinal/citologia , Animais , Teorema de Bayes , Membro Anterior/embriologia , Membro Anterior/inervação , Perfilação da Expressão Gênica , Membro Posterior/embriologia , Membro Posterior/inervação , Proteínas de Homeodomínio/fisiologia , Interneurônios/fisiologia , Região Lombossacral , Camundongos , Camundongos Knockout , Neurônios Motores/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Medula Espinal/embriologia , Tórax , Fatores de Transcrição/fisiologia
16.
Cell Rep ; 21(4): 867-877, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29069594

RESUMO

Control of movement relies on the ability of circuits within the spinal cord to establish connections with specific subtypes of motor neuron (MN). Although the pattern of output from locomotor networks can be influenced by MN position and identity, whether MNs exert an instructive role in shaping synaptic specificity within the spinal cord is unclear. We show that Hox transcription-factor-dependent programs in MNs are essential in establishing the central pattern of connectivity within the ventral spinal cord. Transformation of axially projecting MNs to a limb-level lateral motor column (LMC) fate, through mutation of the Hoxc9 gene, causes the central afferents of limb proprioceptive sensory neurons to target MNs connected to functionally inappropriate muscles. MN columnar identity also determines the pattern and distribution of inputs from multiple classes of premotor interneurons, indicating that MNs broadly influence circuit connectivity. These findings indicate that MN-intrinsic programs contribute to the initial architecture of locomotor circuits.


Assuntos
Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Animais , Sinais (Psicologia) , Vias Eferentes/fisiologia , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Neurônios Motores/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Propriocepção , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Medula Espinal/citologia
17.
Development ; 144(19): 3547-3561, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827394

RESUMO

Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fosfoproteínas/metabolismo , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Animais , Animais Recém-Nascidos , Padronização Corporal/genética , Cartilagem/embriologia , Cartilagem/metabolismo , Diferenciação Celular/genética , Cruzamentos Genéticos , Diafragma/inervação , Diafragma/metabolismo , Diafragma/ultraestrutura , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Homeodomínio/genética , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Neurônios Motores/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Especificidade de Órgãos/genética , Fosfoproteínas/genética , Mucosa Respiratória/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/genética , Análise de Sobrevida , Traqueia/embriologia , Traqueia/metabolismo , Fatores de Transcrição
20.
Neuron ; 93(4): 792-805.e4, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28190640

RESUMO

The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We show that digit-innervating motor neurons can be defined by selective gene markers and distinguished from other LMC neurons by the expression of a variant Hox gene repertoire and by the failure to express a key enzyme involved in retinoic acid synthesis. This divergent developmental program is sufficient to induce the specification of digit-innervating motor neurons, emphasizing the specialized status of digit control in the evolution of skilled motor behaviors. Our findings suggest that the emergence of digits in the limb is matched by distinct mechanisms for specifying motor neurons that innervate digit muscles.


Assuntos
Padronização Corporal/fisiologia , Extremidades/inervação , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Retinoides/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular/fisiologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...